侵权投诉
订阅
纠错
加入自媒体

如何使用Fly-buck为低电压、低功耗工业应用供电

下图是这类系统电源需求的简单方框图。低电压轨(通常 3.3V 或 5V)适用于主系统电源。可将该电压轨用于生成隔离式低功耗电压轨,其通常需要低于 2W 的功耗,而且未经稳压。

如何使用Fly-buck为低电压、低功耗工业应用供电

在这些系统中,非对称半桥或 fly-buck™ 拓扑可提供良好稳压的高效率解决方案。下图是 fly-buck 拓扑的简化原理图。这张图乍眼一看似乎很复杂,但进一步观察后会发现它其实很简单。一次侧电路由一个控制器、一个高侧 (S1) 及一个低侧 (S2) 电源开关、一个电感器和一个输出电容器 (Cr) 组成。

通常,控制器和 FET 整合在统一封装中,支持更高集成度的解决方案。该一次电路在外观和工作方式上与降压稳压器完全相同,其中 Cr 上的电压由控制器调节。二次电路的外观和工作方式则类似于反激转换器,其中可将二次绕组添加至电感器,提供隔离式输出电压。当 S2 导通时,Cr 上的电压加于电感器绕组。该电压经电感器耦合,并通过 D1 为输出电容器 (Co) 充电。输出电压值只取决于电感器的匝数比和 Cr 上的稳定电压。

如何使用Fly-buck为低电压、低功耗工业应用供电

由于 Cr 的电压经过稳压,因此与大多数未稳压方案相比,该拓扑可保持相当严格的输出电压稳压。fly-buck 稳压降低的主要因素在于负载,并与电感器中的绕组阻抗、输出二极管正向电压以及电感器中泄漏电感有关。通常可通过进行少量预加载,将额定 5V 输出电压误差保持在 +/-5% 以内。

由于一次电路的同步属性,fly-buck 电源的效率也十分显著。以 PMP6813 为例,其可提供 1W 5V 的隔离电压,并支持超过 80% 的效率。这种高效率与集成型 FET 进行完美结合,可使 fly-buck 解决方案适合极小型封装。以上提到的 PMP6813 设计方案适合 10 毫米 × 20 毫米的电路板面积,而且设计采用经过 3kV 高压测试的变压器。

尽管我提供的实例是针对 5V 输出,但可通过选择具有不同匝数比的电感器便捷改变输出电压。此外,它还可生成 +/-15V 等隔离式分轨电源。一般来说,更高的输出电压也会产生更高的效率。PowerLab 库中加载了几种 fly-buck 设计方案,例如下面给出的实例。请及时查阅新博客内容,了解我们每月为 PowerLab 新增的更多参考设计。

●   PMP6813 — 5V 输入至 5V/1W 输出的隔离式 DIP 模块

●   PMP6838 — Flybuck 隔离式 SIP 模块 4.5~5.5V 输入电压、5V/1W

●   PMP7315 — Flybuck 18-30V 输入电压、24V/100mA 输出

●   PMP7942.1 — Flybuck 17~32V 输入电压、双 5V/0.25A、15V/0.1A

编辑:wenwei来源:电子元件技术网

声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号